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Audience 

This book has been written to serve the mathematical needs of students engaged in a 
first course in engineering or technology at degree level. Students of a very wide 
range of these programmes will find that the book contains the mathematical 
methods they will meet in a first-year course in most UK universities. So the book 
will satisfy the needs of students of aeronautical, automotive, chemical, civil, 
electronic and electrical, systems, mechanical, manufacturing, and production 
engineering, and other technological fields. Care has been taken to include illustra
tive examples from these disciplines where appropriate. 

Aims 

There are two main aims of this book. 
Firstly, we wish to provide a readable, accessible and student-friendly introduc

tion to mathematics for engineers and technologists at degree level. Great care has 
been taken with explanations of difficult concepts, and wherever possible statements 
are made in everyday language, as well as symbolically. It is the use of symbolic 
notation that seems to cause many students problems, and we hope that we have 
gone a long way to alleviate such problems. 

Secondly, we wish to develop in the reader the confidence and competence to 
handle mathematical methods relevant to engineering and technology through an 
interactive approach to learning. You will find that the book encourages you to take 
an active part in the learning process - this is an essential ingredient in the learning 
of mathematics. 
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The structure of this book 

The book has been divided into 24 chapters. Each chapter is subdivided into a unit 
called a block. A block is intended to be a self-contained unit of study. Each block 
has a brief introduction to the material in it, followed by explanations, examples and 
applications. Important results and key points are highlighted. Many of the examples 
require you to participate in the problem-solving process, so you will need to have 
pens or pencils, scrap paper and a scientific calculator to hand. We say more about 
this aspect below. Solutions to these examples are all given alongside. 

Each block also contains a number of practice exercises, and the solutions to these 
are placed immediately afterwards. This avoids the need for searching at the back of 
the book for solutions. A further set of exercises appears at the end of each block. 

At the end of each chapter you will find end of chapter exercises, which are 
designed to consolidate and draw together techniques from all the blocks within the 
chapter. 

Some sections contain computer or calculator exercises. These are denoted by the 
computer icon. It is not essential that these are attempted, but those of you with 
access to graphical calculators or computer software can see how these modem 
technologies can be used to speed up long and complicated calculations. 

Learning mathematics 

In mathematics almost all early building blocks are required in advanced work. New 
ideas are usually built upon existing ones. This means that, if some early topics are 
not adequately mastered, difficulties are almost certain to arise later on. For example, 
if you have not mastered the arithmetic of fractions, then you will find some aspects 
of algebra confusing. Without a firm grasp of algebra you will not be able to perform 
the techniques of calculus, and so on. It is therefore essential to try to master the full 
range of topics in your mathematics course and to remedy deficiencies in your prior 
knowledge. 

Learning mathematics requires you to participate actively in the learning process. 
This means that in order to get a sound understanding of any mathematical topic it is 
essential that you actually perform the calculations yourself. You cannot learn math
ematics by being a spectator. You must use your brain to solve the problem, and you 
must write out the solution. These are essential parts of the learning process. It is not 
sufficient to watch someone else solve a similar problem, or to read a solution in a 
book, although these things of course can help. The test of real understanding and 
skill is whether or not you can do the necessary work on your own. 

How to use this book 

This book contains hundreds of fully worked examples. When studying such an 
example, read it through carefully and ensure you understand each stage of the 
calculation. 

A central feature of the book is the use of interactive examples that require the 
reader to participate actively in the learning process. These examples are indicated 
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by the pencil icon. Make sure you have to hand scrap paper, pens or pencils and a 
calculator. Interactive examples contain 'empty boxes' and 'completed boxes'. An 
empty box indicates that a calculation needs to be performed by you. The corres
ponding completed box on the right of the page contains the calculation you should 
have performed. When working through an interactive example, cover up the com
pleted boxes, perform a calculation when prompted by an empty box, and then 
compare your work with that contained in the completed box. Continue in this way 
through the entire example. Interactive examples provide some help and structure 
while also allowing you to test your understanding. 

Sets of exercises are provided regularly throughout most blocks. Try these exer
cises, always remembering to check your answers with those provided. Practice 
enhances understanding, reinforces the techniques, and aids memory. Carrying out a 
large number of exercises allows you to experience a greater variety of problems, 
thus building your expertise and developing confidence. 

Content 

The content of the book reflects that taught to first-year engineering and technology 
students in the majority of UK universities. However, particular care has been taken 
to develop algebraic skills from first principles and to give students plenty of oppor
tunity to practise using these. It is our firm belief, based on recent experience of 
teaching engineering undergraduates, that many will benefit from this material 
because they have had insufficient opportunity in their previous mathematical edu
cation to develop such skills fully. Inevitably the choice of contents is a compro
mise, but the topics covered were chosen after wide consultation coupled with 
many years of teaching experience. Given the constraint of space we believe our 
choice is optimal. 

Use of modern IT aids 

One of the main developments in the teaching of engineering mathematics in recent 
years has been the widespread availability of sophisticated computer software and its 
adoption by many educational institutions. Once a firm foundation of techniques has 
been built, we would encourage its use, and so we have made general references at 
several points in the text. In addition, in some blocks we focus specifically on two 
common packages (Matlab and Maple), and these are introduced in the 'Using 
mathematical software packages' section on page xx. Many features available in 
software packages can also be found in graphical calculators. 

On pages xxiii-xxiv we provide a reference table of Maple and Matlab commands 
that are particularly useful for exploring and developing further the topics in this 
book. 
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Additions for the fifth edition 

We have been delighted with the positive response to Mathematics for Engineers 
since it was first published in 1998. In writing this fifth edition we have been guided 
and helped by the numerous comments from both staff and students. For these com
ments we express our thanks. 

This fifth edition has been enhanced by the addition of numerous examples from 
even wider fields of engineering. Applicability lies at the heart of engineering math
ematics. We believe these additional examples serve to reinforce the crucial role that 
mathematics plays in engineering. We hope that you agree. 

Following useful suggestions from reviewers we have added new sections to cover 
the equation of a circle, locus of a point in the complex plane and solution of partial 
differential equations. We have enhanced and integrated the use of software in the 
solution of engineering problems. 

We hope the book supports you in your learning and wish you every success. 

Anthony Croft and Robert Davison 
May2018 



One of the main developments influencing the learning and teaching of engineering 
mathematics in recent years has been the widespread availability of sophisticated 
computer software and its adoption by many educational institutions. 

As engineering students, you will meet a range of software in your studies. It is 
also highly likely that you will have access to specialist mathematical software. 
Two software packages that are particularly useful for engineering mathematics, 
and which are referred to on occasions throughout this book, are Matlab and Maple. 
There are others, and you should enquire about the packages that have been made 
available for your use. A number of these packages come with specialist tools for 
subjects such as control theory and signal processing, so you will find them useful in 
other subjects that you study. 

Common features of all these packages include: 

• the facility to plot two- and three-dimensional graphs; 
• the facility to perform calculations with symbols (e.g. a2, x + y, as opposed to 

just numbers) including the solution of equations. 

In addition, some packages allow you to write computer programs of your own that 
build upon existing functionality, and enable the experienced user to create powerful 
tools for the solution of engineering problems. 

The facility to work with symbols, as opposed to just numbers, means that these 
packages are often referred to as computer algebra systems or symbolic processors. 
You will be able to enter mathematical expressions, such as (x + 2)(x - 3) or 

2 
t -

6 
, and subject them to all of the common mathematical operations: 

t +2t+l 
simplification, factorisation, differentiation, integration, and much more. You will be 
able to perform calculations with vectors and matrices. With experience you will 
find that lengthy, laborious work can be performed at the click of a button. 



Figure 1 
A screenshot from 
Maple showing 
the package being 
used to define 
the function 
f(x) = :l- + 3x - 2 
and plot its graph. 

Using mathematical software packages xxi 

The particular form in which a mathematical problem is entered - that is, the 
syntax - varies from package to package. Raising to a power is usually performed 
using the symbol 11.. Some packages are menu driven, meaning that you can often 
select symbols from a menu or toolbar. At various places in the text we have pro
vided examples of this for illustrative purposes. This textbook is not intended to be a 
manual for any of the packages described. For thorough details you will need to refer 
to the manual provided with your software or its on-line help. 

At first sight you might be tempted to think that the availability of such a package 
removes the need for you to become fluent in algebraic manipulation and other 
mathematical techniques. We believe that the converse of this is true. These pack
ages are sophisticated, professional tools and as such require the user to have a good 
understanding of the functions they perform, and particularly their limitations. Fur
thermore, the results provided by the packages can be presented in a variety of forms 
(as you will see later in the book), and only with a thorough understanding of the 
mathematics will you be able to appreciate different, yet correct, equivalent forms, 
and distinguish these from incorrect output. 

Figure 1 shows a screenshot from Maple in which we have defined the function 
f(x) = x2 + 3x - 2 and plotted part of its graph. Note that Maple requires the 
following particular syntax to define the function: f: = x---+ x2 + 3x - 2. The 
quantity x2 is input as x11.2. 

Finally, Figure 2 shows a screenshot from the package Matlab. Here the package 
is being used to obtain a three-dimensional plot of the surface z = sin(x2 + y2) as 
described in Chapter 21. Observe the requirement of Matlab to input x2 as x • 11.2. 

j .= \ -· \ ~ + J :r - 1 
> plot(f (•),r--5 .. !); 

> 
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Figure2 
A screenshot from 
Matlab showing the 
package being used 
to plot a three
dimensional graph. 

.. w. a.tt..••· c-...,,, ~ • no. • • 1 ... 
lrU"at., • ~ • 1..- .. , __ 1.a 
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1• """- u.-. ... U l 4'' • fl ... Mil 0 • ,..,. Mtl• .._... 
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Where appropriate we would encourage you to explore the use of packages 

such as these. Through them you will find that whole new areas of engineering 
mathematics become accessible to you, and you will develop skills that will help 
you to solve engineering problems that you meet in other areas of study and in the 
workplace. 



Useful mathematical software commands used throughout the book 

The following commands are indicative only and should be read in conjuction with the software's on-line help and the examples found later 
in the book. 

Purpose 

Test whether an 
integer, n, is prime 

Produce a prime 
factorisation of 
an integer, n 

Plot graph of y = j{x) 

Finding partial 
fractions expansion 

Complex numbers 

Find roots of a 
polynomial 

Defining matrices 

Eigenvalues and 
eigenvectors 

Vectors: scalar 
and vector products 

Maple example 

isprime(n) 

ifactor(n) 

plot(xA3,x=-3 .. 3,y=-20 .. 20); 

convert(x/(xA2+3*x+2), 
parfrac); 

use I 
(1+3*I)/(2-I) 

solve(sA3+sA2+s+l=O) 

A:= Matrix([[l,2,3], 
[4,5,6], [7,8,9]]) 

Eigenvalues(A) 
Eigenvectors(A) 

with(LinearAlgebra); 
a:= Vector[row] ( [1,-2,3]); 
b:= Vector[row] ( [2,-1,1]); 
DotProduct(a,b); 
CrossProduct(a,b); 

Matlab example 

isprime(n) 

factor(n) 

x=-3:0.1:3; y=x.A3; 
plot(x,y); 

n = [1]; 

d=[132]; 
[r,p,k] = residue(n,d) 

use i or j 
(1+3*j)/(2-j) 

roots ( [ 1 1 1 1] ) 

A = [1 2 3; 4 5 6; 7 8 9] 

[V, D] = eig(A) 

a= [1 -2 3] 
b=[2 -1 1] 
dot(a,b) 
cross(a,b) 

Page 

11 

12 

152 

279 

461 

462 

530 

641 

724 
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Purpose 

First and higher 
derivatives 

Indefinite and 
definite integration 

Differential equations 
with or without conditions 

Sums of series 

Taylor series 

3dplots 

Laplace transform 

Fourier transform 

Maple example 

f:=t-> tA2*sin(3*t); 
D(f) (t); or diff(f(t) ,t); 
D(D(f))(t); or diff(f(t),t,t); 

int(x*cos(x)A2,x) 
int(l/t,t=l. .2) 

dsolve(diff(y(x),x) - x*y(x)=O); 
dsolve({diff(y(x),x) - x*y(x)=0,y(0)=3}) 

sum(l/k,k=l .. 10); 

taylor(sqrt(x),x=4,4); 

plot3d(xA2+yA2,x=-2 .. 2,y=-2 .. 2); 

with(inttrans): 
f:=t->tA2; 
laplace(f(t),t,s); 

with(inttrans); 
f:=t->Heaviside(t)*exp(-t); 
fourier(f(t),t,w); 

Matlab example 

syms f(t) 
f(t) = tA2*sin(3*t) 
y = dif f ( f ( t) l 
Z = dif f ( f ( t ) I 2 ) 

syms x t 
int(x*cos(x)A2,x) 
int(l/t,1,2) 

dsolve('Dy-x*y=O', 'x') 
dsolve ( 'Dy-x*y=O', 
' Y ( 0) =3 ' I ' X ' ) 

sym k 
symsum(l/k,k,l,10) 

taylor (sqrt (x), 
'ExpansionPoint',4, 
'Order', 4) 

[x,y]=meshgrid(-2:0.1:2, 
-2:0.1:2); Z = X.A2+y.A2; 
mesh(z); 

syms t s 
f=tA2 
laplace(f,t,s) 

syms t w 
f = heaviside(t)*exp(t) 
fourier(f,t,w) 

Page 
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950 
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1100 

1235 







BLOCK 1 
Operations on numbers 

1.1 Introduction 

Key point 

Whole numbers are the numbers ... -3, -2, -1, 0, 1, 2, 3 .... Whole numbers are 
also referred to as integers. The positive integers are 1, 2, 3, 4, .... The negative inte-
gers are ... , -4, -3, -2, -1. The ... indicates that the sequence of numbers contin
ues indefinitely. The number 0 is an integer but it is neither positive nor negative. 

Given two or more whole numbers it is possible to perform an operation on them. 
The four arithmetic operations are addition ( + ), subtraction (-), multiplication (X) 
and division(+). 

Addition ( +) 

We say that 4 + 5 is the sum of 4 and 5. Note that 4 + 5 is equal to 5 + 4 so that 
the order in which we write down the numbers does not matter when we are adding 
them. Because the order does not matter, addition is said to be commutative. When 
more than two numbers are added, as in 4 + 8 + 9, it makes no difference whether 
we add the 4 and 8 first to get 12 + 9, or whether we add the 8 and 9 first to get 
4 + 17. Whichever way we work we shall obtain the same result, 21. This property 
of addition is called associativity. 

Subtraction (-) 

We say that 8 - 3 is the ditTerence of 8 and 3. Note that 8 - 3 is not the same as 
3 - 8 and so the order in which we write down the numbers is important when we 
are subtracting them. Subtraction is not commutative. Adding a negative number 
is equivalent to subtracting a positive number; thus 5 + (-2) = 5 - 2 = 3. Sub
tracting a negative number is equivalent to adding a positive number: thus 
7 - ( -3) = 7 + 3 = 10. 

Adding a negative number is equivalent to subtracting a positive number. 
Subtracting a negative number is equivalent to adding a positive number. 

Multiplication (X) 

The instruction to multiply the numbers 6 and 7 is written 6 X 7. This is known as 
the product of 6 and 7. Sometimes the multiplication sign is missed out altogether 
and we write (6)(7). An alternative and acceptable notation is to use a dot to repre
sent multiplication and so we could write 6 • 7, although if we do this care must be 
taken not to confuse this multiplication dot with a decimal point. 
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Key point 

Key point 

Note that (6)(7) is the same as (7)(6) so multiplication of numbers is commutative. 
If we are multiplying three numbers, as in 2 X 3 X 4, we obtain the same result if we 
multiply the 2 and the 3 first to get 6 X 4, as if we multiply the 3 and the 4 first to get 
2 X 12. Either way the result is 24. This property of multiplication is known as 
associativity. 

Recall that when multiplying positive and negative numbers the sign of the result 
is given by the following rules: 

(positive) X (positive) = positive 
(positive) X (negative) = negative 
(negative) X (positive) = negative 
(negative) X (negative) = positive 

For example, (-4) X 5 = -20 and (-3) X (-6) = 18. 

Division ( -T ) 

The quantity 8 + 4 means 8 divided by 4. This is also written as 8/ 4 or ~ and is 
known as the quotient of 8 and 4. We refer to a number of the formp/q whenp and 
q are whole numbers as a fraction. In the fraction ~ the top line is called the 
numerator and the bottom line is called the denominator. Note that 8/4 is not the 
same as 4/8 and so the order in which we write down the numbers is important. 
Division is not commutative. Division by 0 is never allowed: that is, the denomi
nator of a fraction must never be 0. When dividing positive and negative numbers 
recall the following rules for determining the sign of the result: 
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Example 1.1 
Evaluate 
(a) the sum of 9 and 4 
(b) the sum of 9 and -4 
( c) the difference of 6 and 3 



(d) the difference of 6 and -3 
( e) the product of 9 and 3 
(f) the product of -9 and 3 
(g) the product of-9 and -3 
(h) the quotient of 10 and 2 
(i) the quotient of 10 and -2 
G) the quotient of -10 and -2 

Solution 
(a) 9 + 4 = 13 
(b) 9 + (-4) = 9 - 4 = 5 
(c) 6 - 3 = 3 
(d) 6 - (-3) = 6 + 3 = 9 
(e) 9 X 3 = 27 
(f) (-9) x 3 = -27 
(g) (-9) x (-3) = 27 

(h) ~ = 5 

(i) ~~ = -5 

G) -=-1~ = 5 
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Example 1.2 Reliability Engineering - Time between breakdowns 
Reliability engineering is concerned with managing the risks associated with break
down of equipment and machinery, particularly when such a breakdown is life-critical 
or when it can have an adverse effect on business. In Chapter 23 we will discuss the 
Poisson probability distribution which is used to model the number of breakdowns 
occurring in a specific time interval. Of interest to the reliability engineer is both the 
average number of breakdowns in a particular time period and the average time between 
breakdowns. The breakdown rate is the number of breakdowns per unit time. 

Suppose a reliability engineer monitors a piece of equipment for a 48-hour 
period and records the number of times that a safety switch trips. Suppose the engi
neer found that there were three trips in the 48-hour period. 
(a) Assuming that the machine can be restarted instantly, calculate the average 

time between trips. This is often referred to as the inter-breakdown or 
inter-arrival time. 

(b) Calculate the breakdown rate per hour. 

Solution 
(a) With three trips in 48 hours, on average, there will be one trip every 16 hours. 

Assuming that the machine can be restarted instantly, the average time 
between trips is 16 hours. This is the inter-breakdown time. 

(b) In 16 hours there is one trip. This is equivalent to saying that the breakdown 
rate is 1

1
6 of a trip per hour. 

More generally, 

1 
the breakdown rate = th . b akd . 
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